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A new percolation problem is posed where the sites on a lattice are 
randomly occupied but where only those occupied sites with at least a given 
number rn of occupied neighbors are included in the clusters. This problem, 
which has applications in magnetic and other systems, is solved exactly 
on a Bethe lattice. The classical percolation critical exponents /3 = y = 1 
are found. The percolation thresholds vary between the ordinary percola- 
tion threshold pc(m = 1) = l[(z - 1) and pc(m = z) = [1/(z - 1)] lt(~-1). 
The cluster size distribution asymptotically decays exponentially with n, 
for large n, p # Pc. 

KEY W O R D S  : Percolation ; high-density percolation ; Bethe lattice; 
critical behavior ; disordered magnets ; glass transition. 

1 .  I N T R O D U C T I O N  

In  the usual percolation model(i-3) one considers the sites o f  a lattice to be 
randomly  occupied (or vacant) with a probabili ty p (or 1 - p). This model  
is useful for the physical properties o f  many  real systems. For  example, some 
quenched, dilute ferromagnets and antiferromagnets behave at low tempera- 
tures like a system of  independent magnetic clusters of  a toms which display 
a critical behavior near percolation threshold that  is characterized by the 
singular behavior o f  the moments  of  the cluster size distribution. (~) 

On the other hand, there are several, mostly unexplored, systems where 
physical properties are affected by a percolation-like growth of  the high- 
density regions. Specifically, a model of  high-density percolation on a lattice 
is obtained by randomly  occupying (or not)  each site with probabili ty p (or 
1 - p) but then restricting one's  attention to only those regions o f  the lattice 
where there is a high density of  occupied sites. At  a higher critical concentra-  
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tion (than that of ordinary percolation) these high-density regions merge to 
form a high-density, infinite cluster. Let us consider briefly two physical 
examples where such concepts may be important. 

First, there are systems of magnetic impurities in metallic lattices where 
the formation of a localized magnetic moment depends upon the local en- 
vironment about the impurity site in an essentially discontinuous way. The 
model for these systems was first proposed by Jaccarino and Walker, (5) 
who studied Fe impurities in Nbt_cMoc body-centered cubic alloys and 
found that the Fe impurity develops a local magnetic moment only if at 
least seven of its neighbors are Mo atoms. They also found that Co impurities 
in Rhl_ cPdc face-centered cubic alloys require at least two Pd neighbors for 
the formation of a moment. In these systems, the magnetic moment is 
essentially either zero or some maximum value, depending upon the local 
environment. 

More recently, similar results have been reported in binary alloys, (m such 
as NipCul _ ~, CopRel_ p, and NipV1 _ p. In these cases, a magnetic site develops 
a local moment whenever it is surrounded by sufficiently many other magnetic 
near neighbors. In these binary systems as the concentration p of magnetic 
sites increases, the regions with magnetic moments grow and merge until, at 
a critical concentration pc(m) (where m is the critical number of magnetic 
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Fig. 1. Example of a single cluster of occupied sites (solid circles, both sizes) and its 
vacant perimeter (open circles) on a square lattice. This cluster contains several smaller 
3-clusters of sites (large solid circles) in its high-density regions. 
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near neighbors) an infinite magnetic cluster appears and the system becomes 
ferromagnetic. This critical concentration varies from about 0,45 to about 
0.87 in the systems studied thus far and depends on the lattice structure and 
the critical number of neighbors m. Examples of two-dimensional magnetic 
clusters are illustrated in Fig. 1, m = 3 on the square lattice. 

Second, there is the somewhat less clear possible example of the liquid- 
glass transition. Turnbull and Cohen (7~ have previously developed a free- 
volume model for molecular transport in dense fluids. The extension to 
describe the thermodynamic properties has been developed by Cohen and 
Grest 8 using ideas from percolation theory. In this model, the atom moves in 
a volume v, which is either solid-like or liquid-like, depending on its value. 
Those liquid-like cells which are surrounded by a minimum number of  other 
liquid-like cells form clusters and can exchange volume freely. The communal 
entropy of  the system depends upon the distribution of liquid clusters. The 
density p is a function of  temperature and as p approaches Pc there is a sharp 
freezing out of the entropy as the infinite cluster disappears, resulting in a 
drop in the heat capacity. The critical concentration Pc is then related to the 
liquid-glass transition temperature To. 

In this paper, we shall give a few exact results for high-density percola- 
tion on the Bethe lattice to illustrate certain general features of the problem 
and to clarify the similarities and differences with regard to ordinary 
percolation. 

2. E X A C T  S O L U T I O N  F O R  T H E  B E T H E  L A T T I C E  

We shall consider each site of the lattice to be randomly occupied (or 
vacant) with probability p (or 1 - p). We then restrict our attention to only 
those occupied sites each of which has m of its z nearest neighbor sites 
occupied. Clusters of such sites will be called m-clusters, and we shall primarily 
be concerned with the probability Pro(n, p) that a given occupied site is in an 
m-cluster of size n. For  example, in Fig. 2 the circled occupied site on the 

Fig. 2. A cluster of occupied sites (solid 
circles) and their vacant perimeter sites 
(open circles). The circled occupied site is 
part of 1-cluster of 23 sites, a 2-cluster of 
12 sites, a 3-cluster of 7 sites, and a 4-cluster 
of zero sites. 
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Fig. 3. The 3-cluster of Fig. 2 is reproduced; the 
valence three of the origin site is labeled along 
with the valence less two of each other site; the 
indicated counterclockwise path passes the sites 
in the order that gives the sequence 3, 1 , -1 ,  

- 1, O, - 1, - 1 that labels the cluster class. 

z = 4 Bethe lattice is in a 1-cluster of  size 23, a 2-cluster of  size 12, a 3-cluster 
of  size 7, and 4-cluster of  size zero. 

On a Bethe lattice we can solve this problem exactly by translating it into 
an equivalent random-walk problem and making use of the substantial 
literature (9,z~ on that subject. 

First, we divide the clusters of  atoms into classes according to their 
geometry, as illustrated in the example in Fig. 3, where the 3-cluster of Fig. 2 
has been redrawn. In this scheme we begin by labeling the origin (the circled 
atom) by its valence (number of nearest neighbors in the cluster). Then we 
label every other atom in the cluster by its valence minus two. Then, beginning 
at the origin, we trace a counterclockwise path around the cluster as shown 
and classify the cluster by its n labels, ordered according to their first 
appearance along this path. For example, the 3-cluster of  Fig. 3 is of class 
3, 1, - 1, - 1, 0, - 1, - 1. As a further example, the circled atom in Fig. 2 
is part  of  a 2-cluster of class 3, 1, - 1 ,  1, - 1 ,  - 1 , 2 ,  - 1 ,  - 1 ,  - 1 , 0 ,  - 1 .  
In general the class of a cluster of size n is given by a sequence of n integers 
Xo, Xz , . . . , x~_z ,wi thO <. Xo <~ z, and - 1  ~< x~ ~< z -  2, for i > 0. 

The purpose of defining the labels in this way is that the cluster classes 
then have the property that all of the partial sums of each sequence are 
positive, while the full sum is zero, 

( : 2  fo ra l l  j < n - 1  
S( j )  = x, (1) 

,=o for j = n - 1  

As a result we will find that we can consider the partial sums S( j )  as executing 
a kind of random walk on the integers which begins at the origin with a step 
of x0 units along the positive direction, continues with the positive and 
negative steps of  size x~, and terminates when the random walk first returns 
to the origin. 
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In order to calculate the probability distribution for an occupied site 
being in an m-cluster of size n, we note that each cluster class (each allowed 
sequence) represents exactly 

,) 
xo ~=1 x~ + (2) 

distinct clusters, where each factor in the product corresponds to the different 
choices of which neighbors of each cluster site are occupied. 

Second, we calculate the probability P'({x~}) that an occupied site is in a 
particular m-cluster of class [x0, x~,..., x~_~]. As a first step, we write the 
probability P'([0]) that the occupied site is the only site in the m-cluster. This 
is clearly 

where 

~-1 ( z - l )  
r = i :~-1  t YO - p y - l - ,  (4) 

is the probability that an occupied neighbor has at least m occupied neighbors 
of its own and is thus also in the cluster. With this simple example, it is now 
clear that P'({x~}) is given by 

P'({x,}) pXorXo [p(1 - r)]k(1 - 
k = m a x ( 0 , m -  x o )  k 

�9 = k "  = m a x ( 0 , m  - 2 - x t )  

• [p(1 - r)]k'(1 - p)~-2- '9-k '}  (5) 

Third, by combining Eqs. (2) and (5), we formally obtain the probability 
Pm(n, p) that, at concentration p, an occupied site is in an m-cluster of size n, 

() ( ) Pm(n,p)= ~ z P x~176 o Z- -  Xo p)~_Xo_ k 
(x0, Xo k=max(o,m-xo) k [p(1 - r)]k(1 - 

x I - I  z -  z - 2 - x j  
j=l x~ + P'#+lrXj ~ 2 k' 

k '  = m a x ( O , m -  - x j )  

x [p(1 - r)]k'(1 - p)~-2-x,-k, (6) 

where ~t~,}, is the sum over all classes of n site clusters [or sequences of n 
numbers satisfying Eq. (1)]. 
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Finally, this expression (6) can now be viewed as a random walk of S(j) 
on the integers with the step probabilities 

z - z - 2 - l p)~-2-~-k 
P ' =  l +  #+lr  k 

tr = m a x ( O , m  - 2 - l) 

(7) 

for l = - 1, 0,..., z - 2, of a step being one of l units to the right (of course, 
l = - 1 represents a unit step to the left). Then, we find 

()( Pm(n, p) = ~ z z -  - rZPxo_ 2 ~--[ Pm (8) 
{ x O n  XO X o  - -  J = l 

But this sum can be written as 

Pm(n, p) = Xo=m ~ (Z0)x /z--l__ \ -1  2 [Xo 1) pr Pxo_2Q~o(n- 1) (9) 

for n > 1, where Qxo(n - 1) is the probability that a random walk defined by 
the step probabilities Pt, starting at the point Xo units to the right of zero, 
first visits zero on the (n - 1)th step. Thus, the problem of calculating 
P,~(n, p) is transferred to that of finding Q~o. But the random walk problem 
has previously been studied in detail, ~9'1~ so that the relevant properties of 
Q~o are known. 

Since the random walk defined above has negative steps of only one size 
( - 1 ) ,  it is a "left  continuous" random walk, for which it is known (see 
Ref. 9, Chapter 7) that Qx(n) is given by 

Qx(n) = (x/n)PL"~x (10) 

where PL"~ is the probability that after n steps, the position will be x steps to 
the left. These quantities are related to the {P~} as the ( - x ) t h  moment of 
their generating function, 

Z - - 2  

Ply' 01) 
l =  - 1  

raised to the nth power. That is, the P["~ are defined by 

~b"(y) = ~ P}'~'y' (12) 
1 

From the definition (11) it is clear that, since the Pt are normalized, 
,6(1) -- 1. Furthermore, from Eq. (11), we have that the critical concentration 
p~ is that concentration for which 

(l>~ = de(Y) I = 0 (13) 
d y  : / / = 1  I 
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since the infinite cluster is here associated with a walk that  never returns to 
zero, and when it first occurs the average step is neither to the left (which 
causes finite clusters) nor  to the right ~9,1~ (which causes the infinite cluster 
occupying a nonzero fraction of  the lattice). 

Finally, to obtain the generating function for  the cluster size distribution, 
we consider ~(t), the lowest real root  o f  

t~b(y) = 1 (14) 

Since the P~ are normalized to one, Eq. (11) gives that there is always a root  
o f  Eq. (14) at y = 1, t = 1. But q~(y) is a polynomial  in y plus a positive 
term propor t ional  to y - 1 ;  thus, it is clear that  

=1  for  ~ ' (1 )~<0  
~(1) = <1 for ~b'(1) > 0 

(15) 

so that the critical concentrat ion Pc is that  point  where the root  ~(1) reaches 
one. Finally, we note (see Ref. 9) that  for  left continuous random walks ~(t) 
is a generating function for the Qx according to the relation 

ax(n)t" = ~x(t), for  0 < It[ < 1 (16) 
~ = 0  

We are now ready to calculate explicitly the relevant properties for  the 
Bethe lattice. First, we use the specific form (7) for  Pv and Eq. (11) to calculate 
~b(y), namely, 

1 ~2 (~_ll)(yrp)Z+l z-~-l ( z - 2 - 1 )  
~bCy) = ~-~ + k 

l =  - i  k = m a x ( 0 , m - 2 - l )  

• [p(1 - r)]g(1 - p)~-2-~-k (17) 

which after some manipulat ion becomes the simpler form 

Z--1 1 ~ z -  1 p)~- l -k  
~(Y) = Y-; ~=,,-1 k {p[1 - r(1 - y)]}k(1 - (18) 

which is also a useful form for y ~ 1. 
Thus, the critical concentrat ion is easily evaluated as [see Eq. (13)] that  

concentrat ion where d~(y)/dy = 0, or the solution of  the equation 

1 = ~ k pck(1 - p c )  ~-1-~ (19) 
k=m-1 k 

This result is especially simple in the two extreme cases m = 1 or  2, and 
m = z, where we find 

pc(m-- 1, 2 ) =  1/(z - 1) (20) 
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Fig.  4. The critical percolation concentration vs. z ,  for  m = 1, z/2, a n d  z ;  the  l i m i t i n g  
values of pc(z) as z -§ are 0, 112, and 1 in these cases, respectively. 

in agreement with the ordinary percolation result, and 

pc(m = z) = [ 1 / ( z -  1)] 1/(~-1) (21) 

The fact that  pc(2) = pc(l) follows f rom the fact that  the infinite 1-cluster 
contains an infinite 2-cluster. These results and the case m = z/2 are illus- 
trated in Fig. 4. For  the case m = m(z) it is clear that  t h e  limit z---> oo is 
characterized by 

lira pc(m(z))= lira [m(z)/z] (22) 

since with an infinite number  o f  near neighbors at concentra t ionp,  the fraction 
p will always be occupied. I t  seems that for the case where m = az a minimum 
value of  pc(m(z)) vs. z appears. For  m = z, according to Eq. (21), this 
minimum occurs at z = 1 + e. 

With similar algebra we can, using Eqs. (7), (9), and (16), write the 
generating function for the cluster size distribution, 

G(p, t) = ~ Pm(n,p)t" 

x o = 0 ,'c = m a x ( O , m  - Xo)  

x [p(1 - r)]~(1 - p)~-xo-k (23) 

This formula can be simplified somewhat  to 
m 

k =m p k _ ~(t)]r}~ ) (24) 
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Fig. 5. The percolation probability p,,(o% p) vs. p for all values of m with z = 6 on the 
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which can easily be evaluated numerically for arbitrary m and z, and studied 
analytically in various limiting cases. In particular, we consider the probability 
of  finding an occupied site in an infinite cluster 

Pm(~,p) = I -- ~ Pm(n,p) = 1 - a(p, 1) (25) 
~ = 0  

and the mean size of  the finite clusters 

(n)rlnite = ~ nPm(n, p) = OG(p, t_______~) I (26) 
~=o ~t t=l 

These two quantities have been evaluated numerically from Eq. (24) and are 
shown in Figs. 5 and 6 for all values of  m with z = 6. We note that, from 
Eqs. (15) and (24), the percolation probability Pm(oe, p) =-- O, for all p ~< pc. 
From these results it is clear that all values of  m generally produce qualita- 
tively similar behavior to that of  ordinary percolation (m = 1) on the Bethe 
lattice. One exception i s tha t  Pm=z(oo, p) approaches one as p--> 1 with finite 
slope when m = z, since, the number of  occupied sites removed from the 
infinite cluster is, for small 1 - p ,  proportional to 1 - p  the number of  
vacancies. 

The critical exponents/3 and 7 are determined by the power law singu- 
larities in p - Pc of Eqs. (25) and (26) at p = Pc. To evaluate the exponent/3 
we first determine the behavior of  ~(1) for p near Pc, with r  determined 
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Fig. 6. The  m e a n  size o f  finite clusters  <n>rln~to vs. p for  m = 1, 2, 4, 5, and  6 with z = 6 
on  the  Bethe  lattice. 

by Eq. (18). For  small p - Pc, this root  occurs at ~(1) ~- 1 - 2r162 
which can be shown to be given by 

~(1) z 1 - al'(pc)[r(pc)a~(pc)]-l(p -Pc)  + O(p -po)2 

= 1 - A ( p  - Pc )  + O ( p  - p~)~ (27) 
where 

ai(p) = pk(1 - (28) 
~=~-1 j k 

Thus,  we find 

{11 for  p < p o  (29) 
~ ( I ) =  - A ( p - p c )  for  p >~pc 

so that,  by Eqs. (24) and (25), 

0 for  p ~<Pc (30) 
Pm(~ P) = zApcr~(pc)(pc - p) for p >~ Pc 

and fl = 1 for  all m. To  obtain the exponent  7 we similarly evaluate ~'(1) = 
-1/~b'(1) = +[a~'(pc)(pc-P)]-L which with Eqs. (24)  and (26) gives 
(n>,l~tt~ ~ (Pc - P)-1  for p near  pc or gives 7' = 1, for  all m. Thus  the Bethe 
lattice and mean field values of  the critical exponents for high-density percola- 
t ion are the classical (2'1~ values fl = ~, = 1. 
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Finally, we evaluate the asymptotic form for large n of the cluster size 
distribution. This form can be obtained directly from Eq. (24), but a physically 
clearer derivation is as follows. First, we recalP 3~ that in general the proba- 
bility P(n, b) that an occupied site is in a cluster of  n occupied sites which is 
surrounded by b vacant perimeter sites in the ordinary (m = 1) percolation 
problem is given by 

Pl(n, b) = M(n, b)p~-l(1 - p)b (31) 

where M(n, b) is the number of such distinct clusters that can be drawn about 
the site. Then for ordinary percolation on a Bethe lattice it follows that (8'12~ 
P(n) is, for large n, of  the asymptotic form 

A 
P~(n) = ~ P~(n, b) ~'~o n at---~ e x p [ -  a(p)n] (32) 

where a(p) vanishes at p = Pc as (Pc - p)L 
Next, we consider z-cluster percolation. Here it is useful to consider the 

probability P~(n, b) that an occupied site is in a cluster of  n occupied sites 
surrounded by b occupied sites (each of which is itself not completely sur- 
rounded by occupied sites). On a Bethe lattice this quantity is clearly 

P~(n, b) = M(n, b)p'~-~[p(1 - p~-~)]b (33) 

where M(n, b) is the same quantity as that in Eq. (31). But, since b = 
(z - 2)n + 2 on Cayley trees, this equation becomes 

Pz(n, b) = pM(n, b)(p~-~)~(1 - pZ-~)b (34) 

Therefore, clearly p~- ~ plays the role for m = z that p plays for m = 1. This 
makes clear the reason for the respective Pc values in Eqs. (20) and (21). But, 
in addition, it is clear that asymptotically P~(n) also obeys a form similar to 
Eq. (32), namely 

B e~(n) = P~(n, b) ,,. - ~  exp[-a'(p)n] (35) 
b 71,--+o0 

Finally, we note that Pm(n) for 1 < m < z must be sandwiched between the 
values for m = 1 and m = z, so that its asymptotic form must also be 
exponential with n as in Eq. (35). 

In conclusion, we have demonstrated that m-cluster percolation on a 
Bethe lattice is similar in all important aspects for all values of  m and z. 
However, it may be that, on a real d-dimensional lattice where closed loops 
exist, high-density percolation has different exponents from those of  ordinary 
percolation. In any case, we expect the mean-field values of the exponents to 
be/3 = ), = 1 independent of  m. 
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